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J. Phys. A: Math. Gen. 19 (1986) 3335-3351. Printed in Great Britain 

Finite-size corrections for ground states of the XXZ 
Heisenberg chain 

C J Hamer 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, Canberra, ACT 2601, Australia 

Received 10 December 1985 

Abstract. The method of de Vega and Woynarovitch is used to calculate finite-size correc- 
tions to the ground-state energy in different sectors for the X X Z  Heisenberg chain. 
Finite-size scaling amplitudes and correction-to-scaling exponents in the critical region are 
derived. Using conformal invariance, a scaling dimension x = ( T - y ) / 2 ~  is extracted 
corresponding to the electric field operator in the 8-vertex model: this confirms a conjecture 
of Baxter and Kelland. Finite-size scaling properties near the Kosterlitz-Thouless critical 
point A = - 1  are discussed. 

1. Introduction 

The standard Bethe ansatz method allows one to solve certain models in field theory 
and statistical mechanics on an infinite lattice (Baxter 1982). In the thermodynamic 
limit, the boundary conditions can be written as an integral equation with a difference 
kernel, which may be solved by a Fourier transformation. Unfortunately, however, 
no such explicit solution has been derived for the finite lattice case. 

Recently, a method was given by de Vega and Woynarovitch (1985) for calculating 
the leading-order finite-size corrections to the ground-state energy of any model which 
is soluble by the Bethe ansatz. Basically, they show that an integral equation can be 
written down for the finite lattice case, very similar to the one valid in the thermodynamic 
limit, but with a correction term involving a sum of delta functions minus its continuum 
approximation. The asymptotic behaviour of this correction term as the lattice size N 
goes to infinity can be derived analytically, in favourable cases. 

De Vega and Woynarovitch (1985) used a saddle-point method applicable only 
where the mass gap is non-zero, i.e. the system is non-critical. Here we show, for the 
example of the X X Z  Heisenberg-Ising chain, that the leading finite-size corrections 
can also be derived in the critical region. A brief account of this work was given in 
Hamer (1985). 

After setting up some general equations describing the Heisenberg-Ising model in 
the remainder of the introduction, we snall turn in 9 2 to a discussion of the critical 
region -1 < A  < 1. The finite-size corrections to the ground-state energy for both 
periodic and antiperiodic boundary conditions will be derived. In 9 3 we consider 
briefly the non-critical region A S  -1  and derive scaling functions for the ground states. 
In § 4 the results are reviewed: critical exponents are extracted from the finite-size 
scaling amplitudes, results for the finite-size amplitudes and correction-to-scaling 
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3336 C J Hamer 

exponents are tested numerically, and scaling properties in the vicinity of the Kosterlitz- 
Thouless critical point at A = -1 are discussed. 

Consider then the X X Z  Heisenberg-Ising chain, with Hamiltonian 

The total number of sites N will be assumed even, for convenience. The Bethe ansatz 
for this system was discussed in detail by Yang and Yang (1966). The total number 
m of down spins in the chain is conserved, and so one may label disjoint sectors of 
states by the quantity 

y = 1 - 2 m /  N (1.2) 

where we assume m < N / 2 .  The Bethe ansatz for the eigenstates involves a momentum 
pj for each down spin, and phase factors which depend on pairs of the pj, given by 

which is antisymmetric under exchange of p and q. Periodic boundary conditions are 
satisfied if 

m 

Npj=2rZj- C e(pjipI) (1.4) 
/ = I  

where the Zj are integers or half-odd integers, given by 

I , ,  1 2 , .  . . , I, = - (“;I), - -(?) + 1,. . . , +(y) (1.5) 

for the ground state in each sector. Antiperiodic boundary conditions are satisfied if 
we then let 

4 + i; = I ,  +;. (1.6) 
The energy is given by 

N A  
E = - - + 2  (A- COS^,) 

2 j - 1  

while the momentum is 

(1 .7)  

so that the periodic ground state has zero momentum. 

2. The region - l < A < l  

Our main attention will be focused on the periodic ground state in the critical region 
- 1  < A < 1. Then a convenient change of variables is 

A=-COS y o<y<77 ( 2 . 1 )  

p = 2 tan-’[cot( y / 2 )  tanh A ]  -oO<A<m. (2.2) 

and 
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Let 

4(A, y)  = 2 tan-’(cot y tanh A )  

then (1.4) becomes 
m 

N4(Aj, Y / 2 ) = 2 ~ 4 +  + ( A j - A i ,  Y )  
i = l  

and the energy is 
m N 

E =,cos y-sin y +‘(Aj ,  y/2) 

(2.3) 

(2.4) 

L j = 1  

where the prime denotes differentiation with respect to the A variable. Note that 

2 sin y 
” (” :) = cosh 2A -COS y‘ 

At this point, de Vega and Woynarovitch (1985) proceed to define the function 

This function is continuous and monotonically increasing for real A ; at the roots of (2.4), 

z N ( A i ,  Y )  = zi /N* 

The derivative will be denoted 

u N ( h ,  y )  = a Z N / a A .  (2.9) 

2.1. The thermodynamic limit 

When N goes to infinity the A i  tend to a continuous distribution with density NuN(A, y ) :  

1 Ii+l - Ii 
uw(Ai, y )  = lim - - 

N+* N 0 A i + 1 -  A i  
(2.10) 

and the sum in equation (2.4) reduces to an integral. Following Yang and Yang (1966), 
we assume that the integration extends between limits - b w ( y )  to +b , (y )  without any 
gaps, so that taking the difference between successive index values i in equation (2.4) 
one obtains 

where the limit b&) is determined by the condition 

(2.12) 

By integrating (2.11) over all A from --a3 to +cc (using formulae from appendix l ) ,  
we obtain 

(2.13) 
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so the 'remainder' terms are 

(2.14) 

The ground-state energy per site is then? 

2.1.1. The case y = 0. In this case our system of equations can be solved exactly. From 
equation (2.14), b,(y) goes to infinity as y goes to zero; then the integral equation 
(2.11) can be solved by Fourier series expansion to give 

(2.16) 
1 

2y cosh(?rA/y)' 

The ground-state energy per site is then (Yang and Yang 1966) 

(+m(A, 0) = 

1 
(2.17) 

dA i -,cosh(.rrA) [cosh(2yA) -COS y] '  
&(o) = t cos y - sin2 y 

2.1.2. The case y = O+. When y is small but non-zero, the system of equations has not 
been solved exactly, but Yang and Yang (1966) were able to analyse them using 
perturbation methods. They obtained an integral equation for "(A, y):  

where 

sinh[(.rr -2y)x/2] 
sinh[( .rr - 2y)x/2] + sinh( .rrx/2)' 

m 

p(A - p )  = t  dx exp[ix(A - p ) ]  
-m 

(2.18) 

(2.19) 

The kernel p(A - p )  is one that we shall meet frequently hereafter: its relevant properties 
are listed in appendix 2. 

For the energy per site, they found an equation 
m 

fm(y) -foo(0) = 4.rr sin y I am(& O)aoo(A,  y) dA. (2.20) 
b d y )  

Equation (2.18) can be treated as a perturbed Wiener-Hopf equation, and hence Yang 
and Yang derive that 

(2.21) 

where fo(0) is a constant dependent on y alone. Then 

fm(y) -fm(0) = .rr sin y-y2[1+ o(y2) + O(y4y/(~-y))l. (2.22) 
4Y 

t This differs by a factor 2 from the quantity f (A,  y )  defined by Yang and Yang (1966). 
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2.2. Finite-size corrections 

The discussion above is valid in the limit N + w .  For finite N, de Vega and 
Woynarovitch (1985) show that one can recast the problem in terms of a similar set 
of integral equations. From the definitions (2.7) and (2.9), one can write down 

where the equations corresponding to (2.12)-(2.14) are 
b N ( y )  

uN(A,  Y )  dh = m / N = + ( l  - y )  I - b,w ( y 1 

and 

Hence we obtain an integral equation for the difference uN(Ar y)  - a,( A, y): 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

This can be manipulated by taking Fourier transforms, or using the operator notation 
of Yang and Yang (1966), to give 

where p ( A  - p )  is given by equation (2.19). For the energy per site we obtain in an 
analogous way 

using the relation 

(2.30) 
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2.2.1. The case y = 0. In this case equation (2.28) reduces to 

(2.31) 

where 2 P =  m / N = f  and AN(z)  is the inverse function to zN(h, 0). Now perform a 
Poisson resummation, by taking the Fourier transform: 

W 

p(A - A , ( z ) ) =  c.(A) C O S ( ~ T ~ Z )  
n = O  

where 

Then one finds 

1 "  
UN( A, 0) - U,( A, 0) = -- C (- l ) Jcm+l)~jm(  A ). 

27r j - 1  

(2.32) 

(2.33) 

(2.34) 

The leading term in this expansion is 
r 1 r 4  

(-1)""J dz C O S ( ~ ~ T N Z ) ~ ( A  - ~ N ( z ) )  
-1 /4 

1/4 

=(-~)""(COS[~TNZN(A)] dz C ~ ~ [ ~ ~ T N ( ~ - Z N ( A ) ) ] ~ ( ~ N ( Z ) - A )  
7T L4 

K4 - sin[2vNzN(h)] dz sin[27rN( z - zN(A ) ) ] p ( A N (  z) - A ) ) .  (2.35) 

We have not succeeded in evaluating the integral (2.35) in a simple closed form, 
although approximate expressions can be obtained. Two general features will be 
needed in the subsequent discussion. 

(i) The function p(A -AN(z)) is of bounded variation, as may be seen from the 
definition (2.19): therefore the Fourier series coefficient (2.35) drops off as 0 ( 1 / N )  at 
least (Edwards 1979, (2.3.6)). 

(ii) As the expression on the right of (2.35) is intended to illustrate, the coefficient 
is modulated by an oscillatory function in zN(h,O), with period (257N)-'. Similar 
considerations apply to higher terms in the expansion (2.34). Note that 

CO 

dA [UN( A, 0) - U,( A, O)] = 0. 

Turning to the energy per site, equation (2.29) reduces to 

(2.36) L 

(2.37) 
1/4 

= - 2 7~ sin y 1- 1,4 dz uW( A 
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Again let us perform a Poisson resummation: write 
m 

um(AN(z), 0) = c d, cos(47rnz). 
n = O  

Then 
m 

fN(0) -fm(0) = -7r sin y (-l)’(m+l)d,m. 
j = 1  

Now 

but 

where 

Therefore 

- - cos-‘ [ l/cosh (:)I + Slz 
27r 

S ~ Z  = zN(A, 0) - z,( A, 0). 

where 

S2z = 2 7 ~  sin(27rz)6,z 

3341 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

to leading order. 

gives 
Neglecting the correction term 6,z for the moment, substitution of (2.43) into (2.40) 

(2.45) 

and therefore 

fN(0) -fm(0) = -7r2 sin y/6yN2 (2.46) 

which is the desired result. It can also be obtained by direct substitution of (2.43) into 
(2.37), using (2.16). 

It remains to show that the correction term is negligible. Now 6,z is just the integral 
of the quantity (uN(A, 0) - um(A, 0)) discussed above: hence we deduce that S,z  is 
0 (1 /N) ,  is odd in z, and oscillates with period (27rN)-’. Its derivative is absolutely 
continuous; and hence one may infer (e.g. using Edwards (1967), (2.3.5)) that the 
Fourier integral over 8,z in equation (2.40) is O( l /  N3) and does not affect the leading 
behaviour given by equation (2.46). 
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For the antiperiodic ground state, the treatment goes through in very similar fashion. 
The thermodynamic limit is the same as for the periodic case, so that the ground-state 
energy per site fm(0) =fm(0). For the finite lattice, we have 

which is identical to (2.37) except for the replacement Ii+ 2. Substitution of (2.16) 
and (2.43) into this equation leads to the result 

(2.48) 

Once again, the roots are equally spaced around a circle in the angular variable 4 = 4lrz, 
and the same arguments as above may be used to show that the corrections to (2.48) 
are o( 1/ N3). 

2.2.2. The case y = O+. We will be particularly interested in the region y = 0(1/  N), 
which will be assumed henceforth. The leading term on the right of equation (2.28) 
can be analysed in the same way as in the case y = 0, giving rise to the same conclusions: 
[ g N ( A ,  y )  - g m ( A ,  y ) ]  is O( 1/ N) and oscillates as a function of zN(A, y ) ,  with period 
(2lrN)-'. The correction terms in (2.28) are also O( 1/ N) and are negligible except 
at large A. Again we have 

f N ( 0 )  -fm(0) = lr'sin y/3 yN2. 

m I dA [ V N  (A ,  y - Um(A, y 1 = 0 * (2.49) 

For the energy per site, the leading term on the right of equation (2.29) can be 
-02 

rewritten 

while 

1 
zN ( A, y )  = - cos-' 

21r (cosh(lrA/ y )  
(2.51) 

(2.52) 

(2.53) 

where 

S,z(y) = 2lr sin(2lrz)S1z(y) (2.54) 
to leading order. Neglecting the correction term 6,z, and substituting (2.53) into (2.50), 
one obtains 

-lr2sin y 
6 yN2 

rz 

independent of y, to leading order. 

(2.55) 
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It remains to show that the correction terms which we have dropped are negligible. 
(i) Write 

(2.56) 

The contribution of the term in [ zN (A ,  y )  - z,( A, y ) ]  to the final result will be O( N T 3 )  
by the same arguments as were used in the case y = O  and is negligible. The term 
[zm(A,  y )  - zm(A, O)] is O(y ) ,  as illustrated by equation (2.13); inserting it into a Fourier 
integral such as (2.40) gives a result O ( y W 2 )  = O( N-3) ,  which is equally small. 

(ii) The remaining correction terms on the right of equation (2.29) can be shown 
quite easily to sum to a result O ( y 2 N - ' )  = O ( N 3 ) ,  which is again negligible. 

a i z ( y ) = [ z ~ ( A ,  y ) - z m ( A ,  y ) I + [ z m ( A ,  ~ ) - z m ( A ,  0)I. 

3. Other regions 

3.1. The case A = -1 

The case A = -1 needs to be analysed separately using rescaled variables (Yang and 
Yang 1966). But the same chain of argument as given above can be followed, leading 
to results which are the limiting cases of those given above: 

~ N ( . Y )  -fm(y) = - r 2 / 6 N Z +  O w 3 )  

f N ( 0 ) - f m ( O ) =  T ~ / ~ N ~ + O ( N - ~ )  (3.2) 

(3.1) 
for y = O( N - ' )  and 

for the antiperiodic ground state. 

3.2. The region A <  - 1  

This case has already been analysed by de Vega and Woynarovitch (1985), but in order 
to add somewhat to their results, we shall recapitulate the main points. Only the case 
y = 0 will be considered here. The analysis follows very similar lines to those outlined 
in 0 2. The convenient change of variables here is 

d = -cosh Y'O (3.3) 
and 

p = 2 tan-'[coth( y/2) tan A ]  - ~ / 2 <  A < r / 2 .  
Let 

4(A, y)=2tan- '(coth y tan  A ) ,  

Then (2.4) still holds, while the energy is 

E =iN cosh y-sinh y 

where 

2sinh y 
" ( A '  :) =cosh y-COS 2A' 

Defining variables z N ( A )  and uN(A) as before, we find 

um(A, 0) dA =$ 
7 r l 2  

f 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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and in the thermodynamic limit one obtains an integral equation corresponding to 
(2.11), 

with solution 

(3.10) 

where K(k),  dn(z, k) are elliptic functions of modulus k, with K’(k) /K(k)  = y / r .  
The energy per site in the periodic ground state is then 

fm(0) = cosh y - sinh y dA am(& O)+’ (A ,  :) 
=fcoshy-s inh  y (3.11) 

As regards finite-size corrections, the equation corresponding to (2.37) is 
1 ”  114 

fN(0)-fm(O)=-2asinhy[ -1 /4 dzam(AN(z),O)(- N i = l  c 8 ( z - I i / N ) - l  

Now 

2T (3.13) 

and therefore 

a m ( A ,  0) = ( K / r 2 ) ( 1  - k2 s in2(2~z))’” .  
Approximating A N ( z )  by A,(z) in (3.12) as usual, we thus obtain 

(3.14) 

(3.15) 

De Vega and Woynarovitch (1985) performed a Poisson resummation as in 0 2, and 
then applied a saddle-point approximation to the leading term to obtain 

(3.16) 

where k‘ = (1 - k2)’/’. The same result may be obtained by contour integration. 

expression (3.15) may be rewritten as 
We will now obtain a scaling form for this quantity in the vicinity of y=O. The 

where E (k)  is the elliptic function of the second kind and 
N-1 

p 2  
S N ( p ) =  k=O ( 9 + 4 s i n 2 ( l r k / N )  (3.18) 

p =2Nk’ /k  (3.19) 
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For N large and p fixed, we have (Hamer and Barber 1981a) 

where R14,0(~) is a 'remnant function' discussed by Fisher and Barber (1972a) and CE 
is Euler's constant; while 

k = l - p 2 / 8 N 2  (3.21) 

P 2  In - 
16N2 16N2 64N2  

P 2  P 2  E ( k ) Z  1 (3.22) 

( 2 K ( k ) / r )  sinh y =  r + O ( ( l n  N)-2). (3.23) 

Hence we find 

where 

QO(p)=--+- " 16 P 2  8 [ In (L) - +C, ] +$-: Ri4.0 (5) + r'Ri4.0 (6). (3.25) 

Thus we see that the finite-size corrections obey a scaling form in the vicinity of the 
Kosterlitz-Thouless critical point at A = -1  (or y = 0), up to logarithmic correction 
terms, with QO(p) as the scaling function. Taking the limit p + 0, which corresponds 
to y+O at fixed N, one finds 

Qo(P) b2 (3.26) 

(since R14,0(z)=0(z2) as z+O) ,  and hence one regains the result (3.1). 

the results 
One may perform a similar analysis for the antiperiodic ground state, obtaining 

?m(O) = fm(0 ) (3.27) 

(3.28) 

(3.29) 

lr2 
(3.30) P 2  P 2  P 

Q I ( p )  =--- 16 8 ( ln-+ 8 7T cE )+T+7T2R14,0(&)-7 .  

4. Discussion 

The main result of § 2 was that the finite-size correction to the energy per site of the 
periodic ground state in the critical region -1  < A < 1 is 
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independent of y (to leading order), for y = O( N - ’ ) .  Now the two lowest-lying sectors 
have m = N / 2  and m = N / 2  - 1, or y = 0 and y = 2/ N, respectively. It follows that 
the mass gap between these two sectors is 

FN = N [ f N ( 2 /  N ,  - f N ( o ) l  .- N [ f E ( 2 /  N ,  -fZC(O)l. (4.2) 
N-ca  

But the right-hand side of this expression has already been evaluated by Yang and 
Yang (1966): 

(4.3) 

and hence 

(4.4) 
7T 

FN - - ( 7 ~  - y )  sin y. 
N - m  N y  

The results (4.1) and (4.4) are supported by comparison with some numerical 
results. Eigenvalues of the Hamiltonian (1.1) have been calculated for even lattices 
up to N = 20 sites and sequence extrapolation methods (Hamer and Barber 1981c) 
were used to estimate the finite-size scaling amplitudes. The results are compared 
with the theoretical predictions in table 1, for several values of y. It can be seen that 
the agreement is excellent, except for the mass gap amplitude at y = O ,  where large 
correction terms render the sequence extrapolation inaccurate. 

Table 1. Comparison of theoretical and experimental results for finite-size scaling ampli- 
tudes. The amplitude A, =lim,v,,[N2(f,(0) -jm(0))] and A =limN,,[NFhr]. The theo- 
retical results are given by equations (4.1) and (4.4) of the text. The ‘experimental’ numbers 
were obtained by sequence extrapolation from the numerical values for finite lattices of 
up to N = 20 sites ( N  even); the approximate error in the final digit is indicated in brackets. 

A, A 

Y Experiment Theory Experiment Theory 

~ / 3  1.3604 (2) 1.3603 5.4414 (2 )  5.4413 
71/4 1.4810 (3) 1.4809 6.6641 (7) 6.6643 
~ / 6  1.5709 (6) 1.5708 7.852 (1 )  7.8540 
0 1.6459 (10) 1.6449 9.2 (2) 9.8696 

Now Cardy (1984a) has shown by conformal invariance that the finite-size scaling 
amplitude of the mass gap (or inverse correlation length) for a system at its critical 
point is related to a critical exponent. If the mass gap scales as 

F N  - A / N  
N - l s  

(4.5) 

where N is the size of the system, then 

A =  2 7 ~ ~  (4.6) 
where x is the scaling dimension of the associated operator. In the Hamiltonian field 
theory framework, there is a problem in choosing the ‘correct’ normalisation for the 
Hamiltonian operator, but von Gehlen er a1 (1986) have pointed out that this may be 
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fixed by looking at the energy-momentum dispersion relation. For the present case, 
Johnson et a1 (1973) showed that the excitation energy is 

AE = ( 7 r /  y )  sin y(sin q1 +sin 4,) (4.7) 

for a two-‘particle’ excitation with momenta q1 and q2, so the Hamiltonian ( 1 . 1 )  should 
be divided by a factor ( 7 r /  y )  sin y to give the correct dispersion relation for massless 
particles in the continuum limit. Hence the scaling dimension corresponding to the 
amplitude (4.4) is 

(4.8) 

The operator to which this dimension belongs will be one which produces a 
transition between the two states involved, e.g. a ‘transverse field’ C,“=, U: added to 
the Hamiltonian (1.1). Such a Hamiltonian would correspondt to the 8-vertex model 
in an ‘electric’ field (Baxter 1982). A strong conjecture for its critical exponent was 
put forward by Baxter and Kelland (1974): 

x = (7r - y)/27rTT. 

P e  = Y - 1 ) .  (4.9) 

Using scaling relations between the exponents, our result (4.8) is found to confirm this 
conjecture. 

Another result of § 2 was that the energy per site for the antiperiodic ground state 
in the critical region scales as 

(4.10) 

withfm(0) = f m ( 0 ) ,  so that the gap between the antiperiodic and periodic ground states 
(the ‘kink mass’) scales as 

G N  = N [ f ~ ( o )  - f ~ ( o ) ]  - n2 Sin y/2yN. (4.11) 

Then the corresponding finite-size scaling amplitude for the ‘correctly’ normalised 
Hamiltonian is 

B = 7~12. (4.12) 

Now Cardy (1984b) has used duality to argue that the kink mass should have an 
amplitude B = 7rq for the 2, and 2, models in two dimensions. We conjecture that 
for the present model B = 2~77,  so that the result (4.12) corresponds to the known 
magnetic exponent 77 = a  for the 8-vertex model (Baxter 1982). A heuristic argument 
to support this conjecture is that the 8-vertex model, which reduces to the present 
6-vertex or X X Z  model as one special case, reduces in another special case to a pair 
of identical and independent Ising models (Baxter 1982). In that case the mass gap 
will be equal to the Ising gap, corresponding to the excitation of one Ising lattice; but 
the kink mass will be twice the Ising kink mass, because the antiperiodic boundary 
conditions affect both Ising lattices. Then Cardy’s result (1984b) for the Ising (2,) 
model implies our conjecture above. A more rigorous demonstration of this result 
would be desirable, however. 

Next, let us consider correction-to-scaling terms. Assuming that the relationship 
(4.2) holds beyond the leading term (which we have not proved), the result (4.3) of 

N - t m  

t I am indebted to Professor Rodney Baxter for this remark. 
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Yang and Yang (1966) also gives us the leading correction-to-scaling exponent for the 
mass gap: in the language of Privman and Fisher (1983) 

(4.13) 
for IT> y 3  ~ / 3 .  

At the point A = -1, which is the endpoint of the critical line where a Kosterlitz- 
Thouless transition in A takes place, the relation (4.2) still holds, and from Yang and 
Yang (1966) we obtain 

- ( . r r2/N)+O[(Nln N ) - ’ ]  (4.14) 

which exhibits the logarithmic corrections to scaling expected at this point. For the 
ground-state energy f N ( 0 ) ,  or the kink mass, our arguments of 0 2 indicate an upper 
bound on the equivalent correction-to-scaling exponent 

y ; s  -1. (4.15) 

These arguments regarding correction-to-scaling terms are not rigorous and it is 
again useful to check then  numerically. Table 2 shows the results. The agreement 
with (4.13) is good, especially for the two intermediate y values. At y = 0 there is 
some discrepancy, but this is not unexpected due to the logarithmic correction terms. 
For the ground state, the exponent y: does seem to respect the bound (4.15), possibly 
saturating it at y = 0 .  It is noteworthy that the correction-to-scaling terms are much 
less important for the ground-state energy or the kink mass than for the mass gap. 

FN N-PP) 

Table 2. Comparison of theoretical and experimental results for correction-to-scaling 
exponents. The exponent y ;  is associated with the ground-state energy per site jN(0); the 
exponent y ,  with the mass gap. The theoretical result for y ,  is equation (4.13) of the text; 
the ‘experimental’ numbers were found as in table 1 .  

Y ;  Y3 

Y Experiment Experiment Theory 
~~ 

7r/3 1.95 ( 1 )  2 .0(3)  2.0000 
7r/4 1.6(2) 1.33 ( 1 )  1.3333 
7r/6 1.2 (4) 0.80 ( 1 )  0.8000 
0 1.0 (4) 0.2 ( 1 )  0.0000 

In 9 3 our main object was to extract the scaling function for the finite-size 
corrections near A = -1. It was established that for A S  -1, the finite-size corrections 
to the ground-state energy per site may be written 

f N ( O ) - f m ( O )  N<a, -(1/N2)QO(p)+O[(N (4.16) 

for p fixed, where 

p = 2Nk‘/ k = 8 N  exp(-.rr2/2 y )  = 8 N  exp{-.rr2/2[ -2(1 +A)]”*}. (4.17) 

A similar scaling form was found for the kink mass. This is in agreement with theoretical 
expectations (Fisher 1971, Fisher and Barber 1972b, Hamer and Barber 1981a) that 
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the scaling function near the critical point should be a function of the variable 
N / t  = NF, where in the present case the mass gap for A S  -1 is (Johnson et a1 1973) 

(4.18) 

Finally, let us remark on the Callan-Symanzik beta function for this model, which 
is often used in finite-size scaling analyses to estimate the correlation length exponent 
v (Barber 1983). Suppose we introduce a physical lattice spacing a and a ‘physical’ 
Hamiltonian Hphys related to the lattice Hamiltonian (1) by 

H p h y s =  (l /a)H. (4.19) 

Now suppose we change the spacing a and simultaneously renormalise the coupling 
A so as to keep the physical mass gap F /a  constant. Then the beta function may be 
defined as 

P ( A )  = a dA/dalf/o=constant (4.20) 

F = 8.rr exp( -7r2/2 y ) .  

and one may show quite simply that it is given by 

P ( A )  = F ( A ) / F ‘ ( A ) .  (4.21) 

On a finite lattice, the most naive estimate of the beta function is (Hamer and 

PHNBB(A) = FN(A)/Fh(A)  (4.22) 

where F N ( A )  is the finite-lattice mass gap; but a more rapidly convergent estimate 
may be obtained from a pair of lattices of different sizes N and N ’ ,  according to a 
neat renormalisation group argument of Roomany and Wyld (1980): 

Barber 1981a) 

For A s  -1, the result (4.18) leads to 

(4.23) 

(4.24) 

which is the form of algebraic singularity expected at a Kosterlitz-Thouless transition 
(Barber 1983). Both the estimates (4.22) and (4.23) will converge to (4.24) in this 
region. But for -1 < A < 1, on the critical line, the expression (4.21) is undefined. From 
the result (4.4), we find that the estimate (4.22) gives 

PF(A)  - - 7 r y = - ~ O ~ ( l + A ) ” ~  (4.25) 

while the estimate (4.23) gives zero, to leading order. The Roomany-Wyld estimate 
(4.23) is therefore clearly superior for the analysis of a Kosterlitz-Thouless transition 
such as this, because its continuation beyond the critical point at A = -1 is smooth, 
whereas the Hamer-Barber estimate (4.22) suffers an infinite discontinuity in slope. 
This explains the poor convergence for PEB found in Hamer and Barber (1981b). 

N - m  
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Appendix 1 

Two useful results listed by Yang and Yang (1966) are reproduced here: 

exp(iay) 27r s inh[ (n-p)y]  cc 

- 
da cosh a -cos p sin p sinh n y  

O0 exP(iffY)- n - 5 --cc da cosh a cosh(nyl2)' 

Appendix 2. Properties of the kernel p ( A )  

This function was also discussed by Yang and Yang (1966), appendix C. 

(9 For -1<A<O 

for O < A < 1  P ( A ) < O .  

(ii) The behaviour at large A may be found by contour integration 

p ( A ) = X c , ,  n exp(-=A)+c,, = - Y  exp(-(2n+l)-A Y 

(for 7r/ y irrational) so p ( A )  drops off exponentially at large A. 
(iii) p ( A )  is symmetric in A. 

(Al . l )  

(Al.2) 

(A2.1) 

(A2.3) 

Note added. After completion of this work, a paper appeared by Blote et a1 (1986) showing that the 
finite-size scaling amplitude of the ground-state energy is proportional to c, the central charge of the Virasoro 
algebra. They deduced the value of this amplitude for the XXZ model from previous work by Takahashi 
(1973,1974), using the well known correspondence between a finite system with periodic boundary conditions 
and one at finite temperature. Their result agrees with ours and corresponds to a central charge c = 1. 
Equivalent results for the ground-state amplitude in the special case of the XXX model have also been 
obtained by Avdeev and Dorfel (1986), using essentially the same methods as ours. 
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